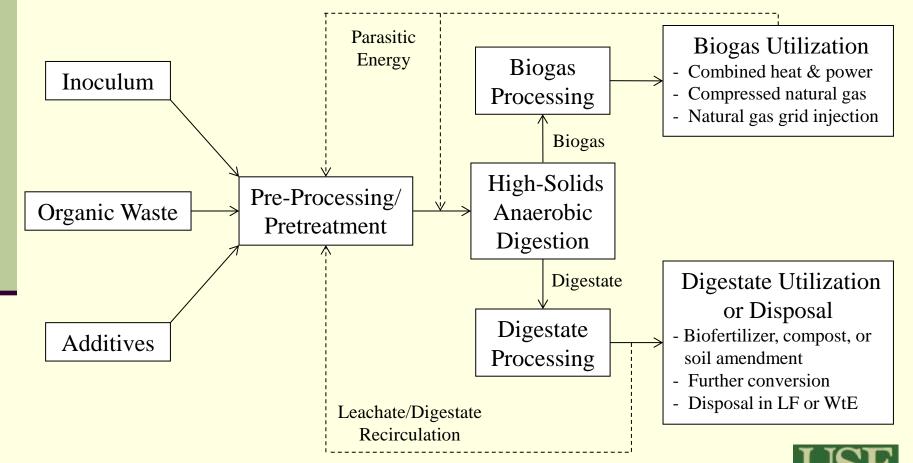


Bioenergy Production from MSW by Solid-State Anaerobic Digestion


Sarina J. Ergas, Daniel H. Yeh Greg Hinds, George Dick, Meng Wang

Department of Civil & Environmental Engineering University of South Florida, Tampa, FL

> Presentation to TAG February 16, 2016

Intro to HS-AD (a.k.a. SS-AD)

Designed to process feedstocks with > 15% total solids content.

Zero Waste Energy, Monterey

Research Motivation

Anaerobic Digestion (AD) of OFMSW results in:

- Energy recovery/renewable energy generation
 - Reduces fugitive GHG emissions from landfills
 - Offsets GHG emissions from fossil-fuel derived energy
- Nutrient recovery/organic fertilizer production
 - Reduces landfill leachate volume and strength
 - Offsets impacts of inorganic fertilizer production

High-Solids AD (HS-AD) advantages over Liquid AD:

- Reduced parasitic energy demand
- Reduced reactor volume requirements
- Reduced water usage and leachate generation

Research Objectives

Overall Goals

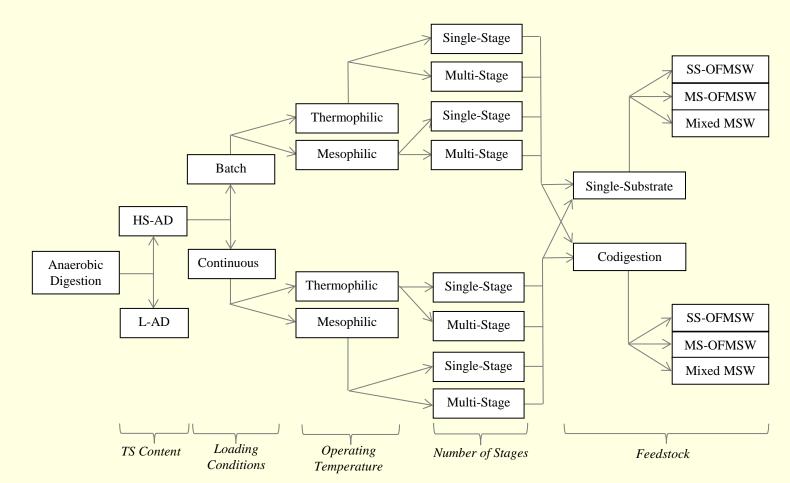
 Contribute to the fundamental science of HS-AD and evaluate potential for implementation in FL

Specific Objectives

- 1. State-of-the-Art of HS-AD
 - Trends and drivers in the industry and appropriate technologies for FL
- 2. Enhancing Bioenergy Production
 - Improve biodegradability of yard waste and explore co-digestion strategies
- 3. Potential for HS-AD Implementation in FL
 - Identify promising locations for HS-AD based on existing MSW infrastructure and potential bioenergy production, GHG emissions reductions and nutrient recovery.
 - Evaluate economics and develop policy recommendations.

Objective 1: State-of-the-Art

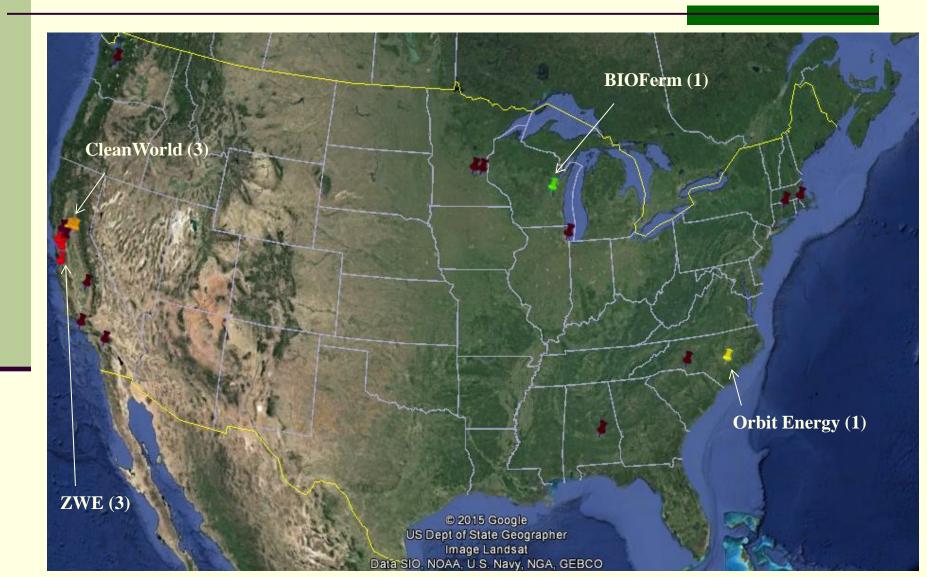
Goals


- Understand trends and identify primary drivers in the industry
- Identify appropriate technologies for implementation in FL

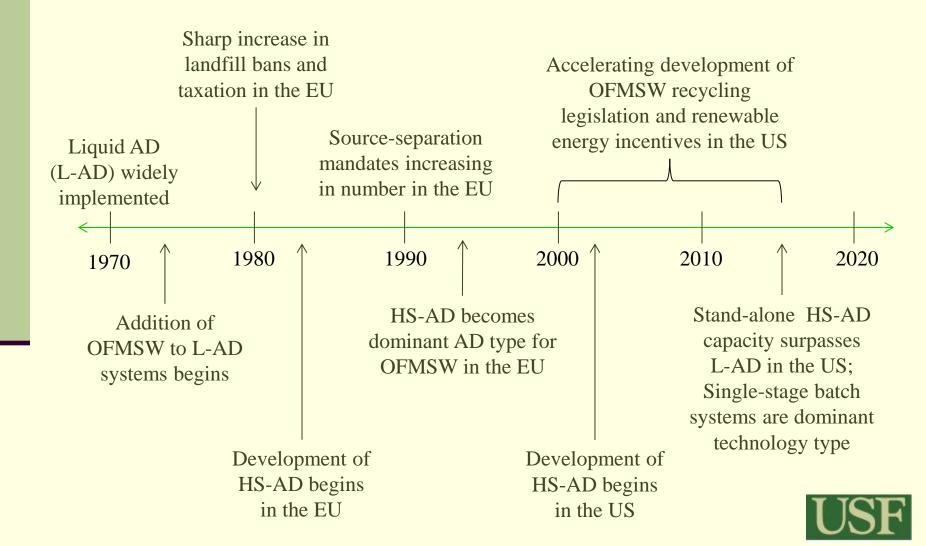
Methodology

- Review published and "grey" literature
- Developed chronological database of US HS-AD projects
- Visits to facilities in California and the Netherlands

HS-AD Technology Classifications

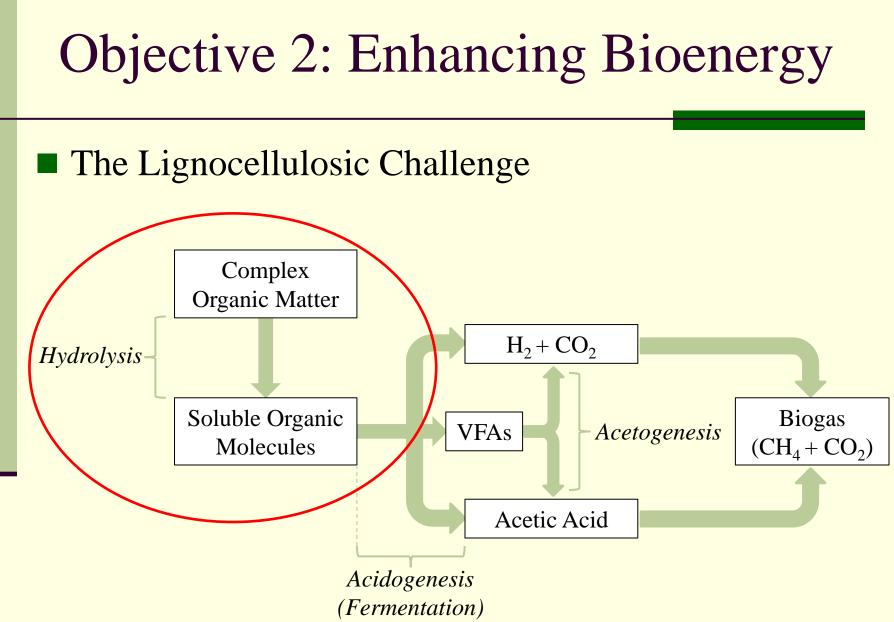


HS-AD Development in the US



HS-AD Locations in the US

HS-AD Development Timeline



Summary of Major Findings

Policy promoting OFMSW recycling in the US increasing:

- 20 states now have yard waste landfill bans, 5 have food waste bans
- 7 have landfill diversion targets
- Over 200 communities offer separate collection of food waste
- *Required* source-separation in San Francisco, Seattle, VT, and CT
- 29 states now have renewable portfolio standards
- HS-AD implementation parallels policy development
 - HS-AD has surpassed L-AD for OSFMW processing capacity
 - CA is leading the way with policy and HS-AD development
- Single-stage, batch, thermophilic, "garage" type systems are the most suitable for Florida
 - Low cost, simple operation, reliable

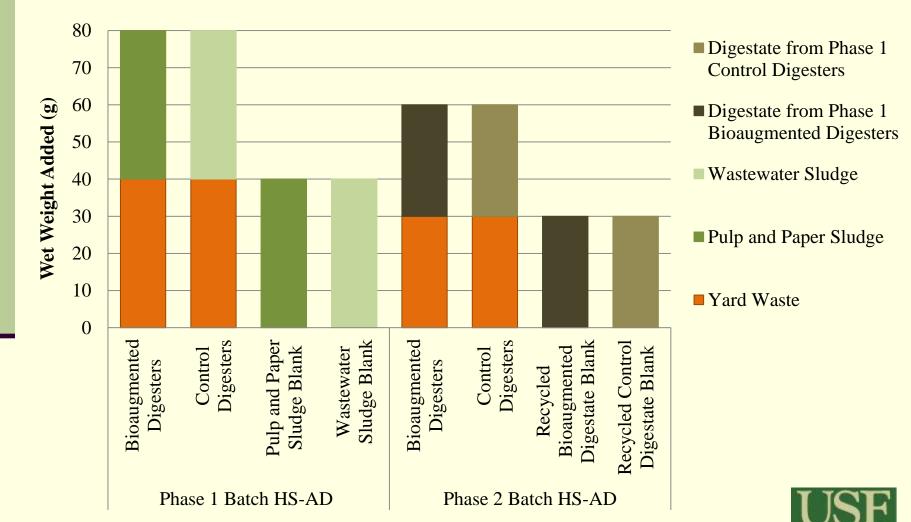
Objective 2: Enhancing Bioenergy

Goals

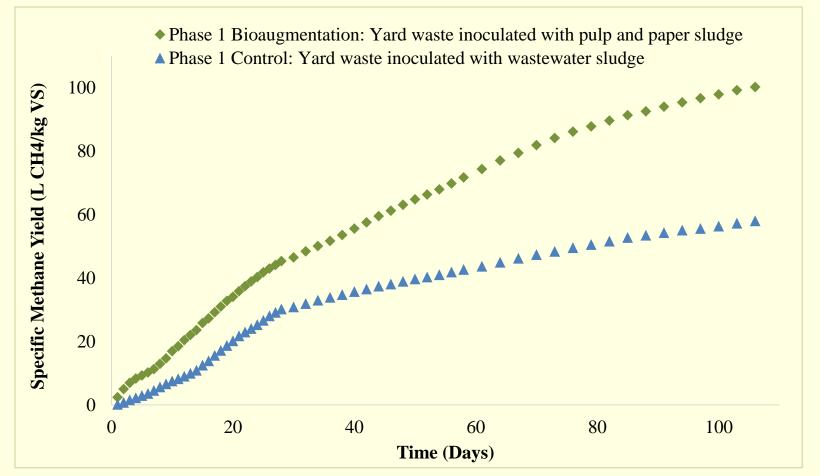
- Study the effects of bioaugmentation with pulp and paper mill anaerobic sludge on methane yields in batch HS-AD of yard waste
- Determine whether enhancements can be sustained via digestate recirculation

Hypothesis

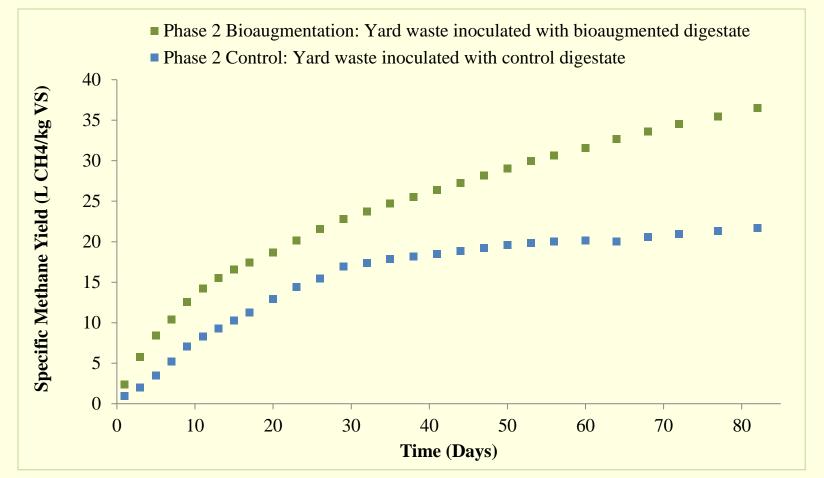
 Hydrolytic microorganisms in pulp and paper sludge are adapted to lignocellulosic waste and therefore have a greater capacity to degrade lignocellulosics than a conventional inoculum



Materials and Methods



Digester Compositions


14

Phase 1 Specific Methane Yields

Phase 2 Specific Methane Yields

Summary of Major Findings

- Results suggest that this strategy could serve as a low impact alternative to pretreatment
 - Significant enhancements in methane yields achieved and sustained through bioaugmentation with pulp & paper sludge

Chemical and lignocellulosic data support hypothesis

- VFA concentrations indicate methanogenesis was rate-limiting in bioaugmented digesters while hydrolysis was limiting in control digesters
- 16%, 16%, and 2% less lignin, cellulose, and hemicellulose in bioaugmented digestate relative to control digestate

Need for future research:

- Effects of varying substrate to inocula ratios
- Mechanisms of methane yield enhancement
- Bioaugmentation of OFMSW co-digestion mixtures food, yard, biosolids.
- Pilot and full-scale testing

Objective 3: Implementation in FL

Goals

- Identify best FL counties for HS-AD implementation based on:
 - Existing MSW infrastructure
 - Potential bioenergy production & GHG emissions reductions
 - Potential for nutrient recovery.
- Evaluate economics and develop policy recommendations.

Methodology

- Review published and "grey" literature and FDEP data
- Consider findings from State-of-the-Art assessment
- Estimate potential bioenergy production, GHG reductions and nutrient recovery

Incentive for HS-AD Implementation

■ 75% recycling goal by 2020

- Current statewide recycling rate = 50%
 - Yard and food waste recycling rates = 51% and 7%, respectively
- 12% of waste stream is yard waste and 7% is food waste
 - Up to 13% increase in recycling rate achievable via OFMSW recycling
- Renewable energy generation
 - Up to 500MW of renewable energy could be produced
 - 175 MW electricity (~1% of FL total demand, > \$120M) + 200 MW heat
 - OR: 80 million DGEs of CNG per year (~11.5% of FL total demand)
 - 660,000 MTCO₂E per year offset (~\$3.2M \$400M)
- Nutrient recovery
 - Up to 7,000 TPY and 3,500 TPY of N and P, respectively (~\$ 2.1M)

OFMSW "Recycling" Infrastructure

Liquid AD (a) 1a - Harvest Power

Composting (b)

1b - George B. Wittmer Assoc., Inc.¹² 2b - New River LF

le

- 3b Watson C&D 4b - Vista LF
- 5b Solorganics, Inc.
- 6b 1 Stop Landscape and Brick, Inc.
- 7b Bay Mulch. Inc.
- 8b Mother's Organics, Inc.
- 9b Busch Gardens
- 10b Bay Mulch, Inc. Plant City
- 11b BS Ranch and Farm, Inc.
- 12b 1 Stop Landscape, Inc.
- 13b Okeechobee LF
- 14b JFE-Brighton McGill¹³
- 15b MW Horticulture Recycling¹²
- 16b Environmental Turnkey, LLC.

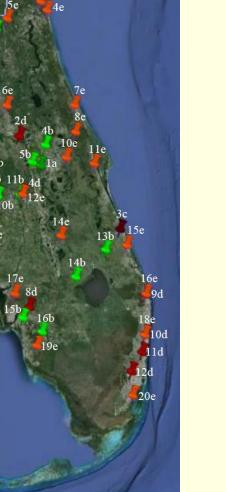
Bioenergy (c)

- 1c Gainsville Ren. Energy Center, 100MW wood-fired power plant
- 2c Brooksville Power and Lime 70 MW wood-fired power plant
- 3c INEOS New Plant Bioenergy Hybrid Gasification; 8MGY eth.

WtE (d)

- 1d Bay County WtE 2d - Lake County WtE 3d - Pasco County WtE
- NOTES: ¹Not listed in FDEP, 2015b; ²Yard waste composting only; ³Permitted by Seminole Tribe; ⁴Yard waste and tires WtE only

WtE - Continued (d) 4d - Polk County WtE 5d - Hillsborough County WtE 6d - Mckay Bay WtE 7d - Pinellas County WtE 8d - Lee County WtE 9d - North County WtE 10d - North Broward WtE 11d -South Broward WtE


12d - Dade County LtE

LFGTE (e)

1e - Springhill Regional LF 2e - Perdido County LF 3e - North Duval LF 4e - East Duval LF 5e - Trail Ridge LF 6e - Baseline LF 7e - Tomoka Farms Rd LF 8e - Osceola LF 9e - Hernando County LF 10e - Orange County LF 11e - Brevard County LF 12e - North Central LF 13e - Lena Rd LF 14e - Highlands County FL 15e - Saint Lucie County LF 16e - Zemel Rd LF 17e - PBCSWA RRF Site #7 18e - Monarch Hill LF 19e - Naples LF

20e - South Dade LF

Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2015 Google Image Landsat

OFMSW Recycling Infrastructure

Liquid AD (a) 1a - Harvest Power

Composting (b) 1b - George B. Wittmer Assoc., Inc.¹² 2b - New River LF 3b - Watson C&D 4b - Vista LF **5b** - Solorganics, Inc. 6b - 1 Stop Landscape and Brick, Inc. 7b - Bay Mulch, Inc. 8b - Mother's Organics, Inc. 9b - Busch Gardens 10b - Bay Mulch, Inc. Plant City 11b - BS Ranch and Farm, Inc. 12b - 1 Stop Landscape, Inc. 13b - Okeechobee LF 14b - JFE-Brighton McGill¹³ 15b - MW Horticulture Recycling¹² 16b - Environmental Turnkey, LLC.

NOTES: ¹Not listed by FDEP; ²Yard waste composting only; ³Permitted by Seminole Tribe

Image Landsat

3b

6b

10b

15b

16b

13h

4b

© 2015 Google Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Outlook in Florida

- Counties where implementation is most feasible:
 - Miami-Dade, Broward, Palm Beach, Hillsborough, Orange, Pinellas, Duval, Lee, and Alachua
- Ideal locations for demonstration:
 - Universities, existing composting plants, or landfills with LFGTE
- Primary barrier: Economics
 - Average landfill tipping fee in FL = \$43.65
 - Break-even HS-AD tipping fee without energy sales = \$41 \$53
 - With energy sales = \$4 \$32
 - Lack of markets for compost and lack of regulatory drivers

Summary of Major Findings

- Outlook is promising, especially in highly populated counties
- Potential environmental and economic benefits are significant
- Economic sustainability is reliant upon numerous factors
 - Local tipping fees
 - Quantity, quality, and proximity of available feedstock
 - Energy and compost markets and renewable energy incentives
 - Public-private partnerships
- Legislative incentive has potential to greatly improve the feasibility of HS-AD implementation; recommendations:
 - Bans on landfilling food waste and yard waste
 - Mandated source-separation of food waste and yard waste
 - Policies promoting compost use and renewable energy generation

Additional Research

- Pilot System
 - Preliminary studies developing operation standards
- Co-digestion
 - Yard waste, food waste, biosolids
- Oyster Shells
 - Waste product, alkalinity source
- Micro-aeration
 - Improving biogas quality

Students & Postdoc

Graduate and Postdoc

Name	Rank	Department	Institution
Hinds, Gregory	MS	Civil & Environmental Engineering	USF
Dick, George	MS	Civil & Environmental Engineering	USF
Wang, Meng	Postdoctoral Researcher	Civil & Environmental Engineering	USF
Anferova, Natalia	Visiting PhD student	Water Technology & Environmental Eng.	Prague Univ. Chemistry & Technology
Dixon, Phillip	PhD	Civil & Environmental Engineering	USF

Undergraduate

Name	Rank	Department	Institution
Ariane Rosario	Third Year	Civil & Environmental Engineering	USF
Lensey Casimir	Fourth Year	Civil & Environmental Engineering	USF

Students & Postdoc

A

Feedback on Final Report

Suggestions for Future Research

Acknowledgements

- This material is based upon work supported by the William W. "Bill" Hinkley Center for Solid and Hazardous Waste Management (Subcontract No. UFOER00010286), the National Science Foundation S-STEM Graduate Scholarship (Grant No. DUE-0965743), and the USF Richard Ian Stessel Fellowship. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the funding agencies.
 - TAG Members:

Name	Company	Email		
Steve G. Morgan	FDEP	steve.morgan@dep.state.fl.us		
Wendy Mussoline	University of Florida	wmussoli@ufl.edu		
Juan R. Oquendo	Gresham, Smith and Partners	juan_oquendo@gspnet.com		
Debra R. Reinhardt	University of Central Florida	debra.reinhart@ucf.edu		
Larry Ruiz	Hillsborough County	ruizle@hillsboroughcounty.org		
Adrie Veeken	Attero, The Netherlands	adrie.veeken@attero.nl		
Shawn Veltmann	CHA Consultants	sveltman@chacompanies.com		
Bruce Clark	SCS Engineers	bclark@scsengineers.com		
Chris Bolyard	Waste Management, Inc.	cbolyard@wm.com		
Ramin Yazdani	UC Davis; Yolo County, CA	ramin.yazdani@yolocounty.org		
Coby Skye	Las Angeles County, CA	cskye@dpw.lacounty.gov		

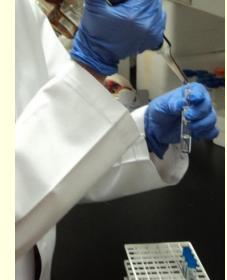
HS-AD Vendors in the US

Vendor Name	Main Office Location	Founding Year	Primary Partnerships	# of Facilities in Operation in the US	# of Facilities in Development in the US	
Zero Waste Energy, LLC	California	2009	Eggersmann Group, Bulk Handling Systems, Environmental Solutions Group	≥3	≥7	
CleanWorld Corporation	California	2009	UC Davis, Synergex	≥ 3	≥1	
Orbit Energy, Inc.	North Carolina	2002	McGill Environmental	≥1	≥ 5	
BIOFerm Energy Systems	Wisconsin	2007	Viessmann Group, Schmack Biogas	≥1	≥1	
Organic Waste Systems, Inc.	Belgium (subsidiary in Ohio)	1988	NR	≥ 0	≥1	
Harvest Power, Inc.	Massachusetts	2008	GICON Bioenergie GmbH	≥ 0	≥ 1	
Eisenmann Corporation	Germany (subsidiary in Illinois)	1977	NR	≥ 0	≥2	
Turning Earth, LLC.	Denmark (subsidiary in Georgia)	2009	Solum Group, Aikan A/S	≥ 0	≥ 1	
EcoCorp, Inc.	Maryland	2000	NR	≥ 0	≥ 0	

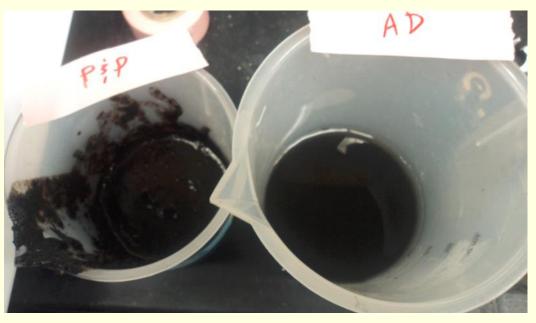
US Technology Characteristics

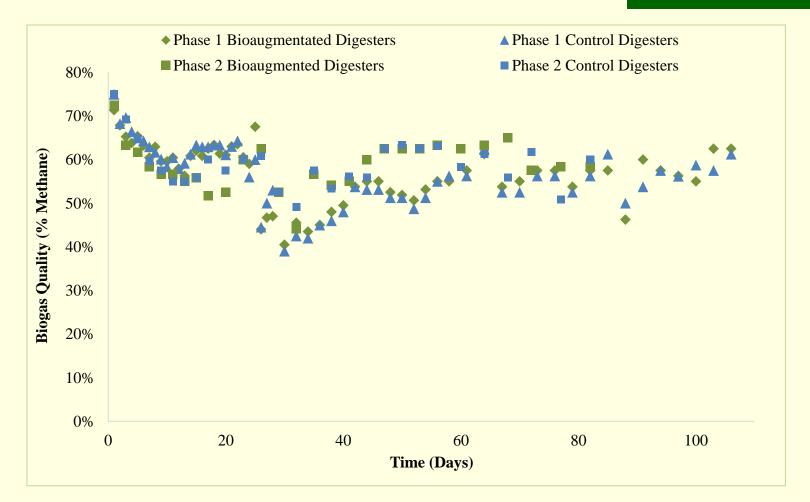
Vendor Name	Operating Temperature	TS Content	Loading Conditions	Number of Stages	Retention Time	Parasitic Energy Demand
Zero Waste Energy, LLC	Thermophilic	< 50%	Batch	1	21 days	20%
CleanWorld Corporation (formerly CleanWorld Partners, LLC)	Thermophilic	~10%	Continuous	3	20-30 days	
Orbit Energy, Inc.	Thermophilic	< 45%	Continuous	1	"short"	8%
BIOFerm Energy Systems	Mesophilic	25-35%	Batch	1	28 days	5-10%
Organic Waste Systems, Inc.	Thermophilic or Mesophilic	< 50%	Continuous	1	20 days	NR
Harvest Power, Inc.	Thermophilic	NR	Batch	2	\geq 14 days	NR
Eisenmann Corporation	Thermophilic	NR	Continuous	1	NR	NR
Aikan North America, Inc.	Thermophilic	NR	Batch	2	NR	NR
EcoCorp, Inc.	Thermophilic	35-40%	Continuous	1	20 days	20%

NR = Not Reported; Information reported here was derived from technology vendor websites and personal communications

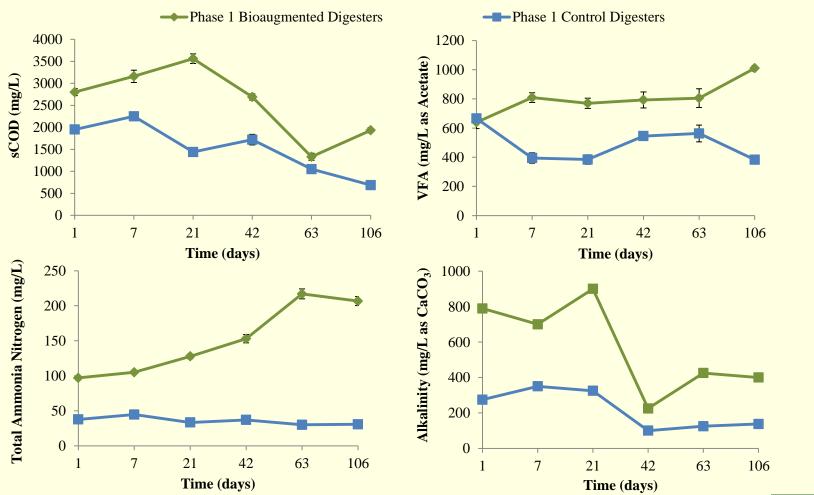


Materials and Methods Cont'd



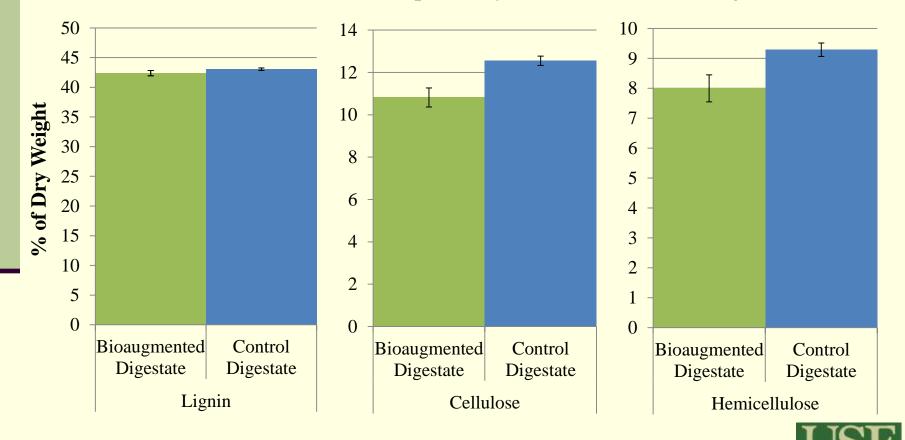

Inocula and Substrate Characterization

	Pulp and Paper Sludge	Wastewater Sludge	Yard Waste for Phase 1 Batch HS-AD	Digestate from Phase 1 Bioaugmented Digesters	Digestate from Phase 1 Control Digesters	Yard Waste for Phase 2 Batch HS-AD
Alkalinity (mg/L as CaCo ₃)	2,100	580	50	400	140	25
TS (% of wet weight)	10.0 ± 0.2	0.6 ± 0.0	50.8 ± 3.4	18.5 ± 0.1	23.7 ± 0.3	64.2 ± 0.5
VS (% of wet weight)	8.4 ± 0.1	0.4 ± 0.0	46.4 ± 2.9	16.6 ± 0.1	21.7 ± 0.2	60.1 ± 0.4

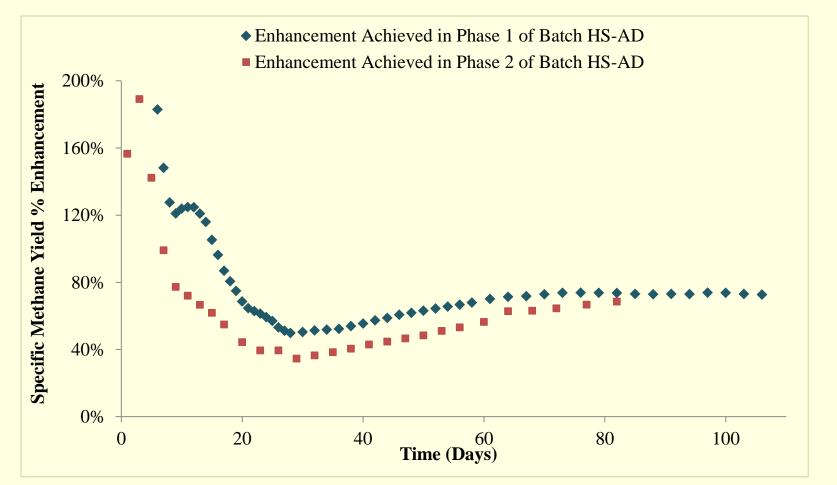


Biogas Quality

Chemical Analysis



pH = 7.1-8.4 (in bioaugmented digesters); 6.3-8.0 (in control digesters)



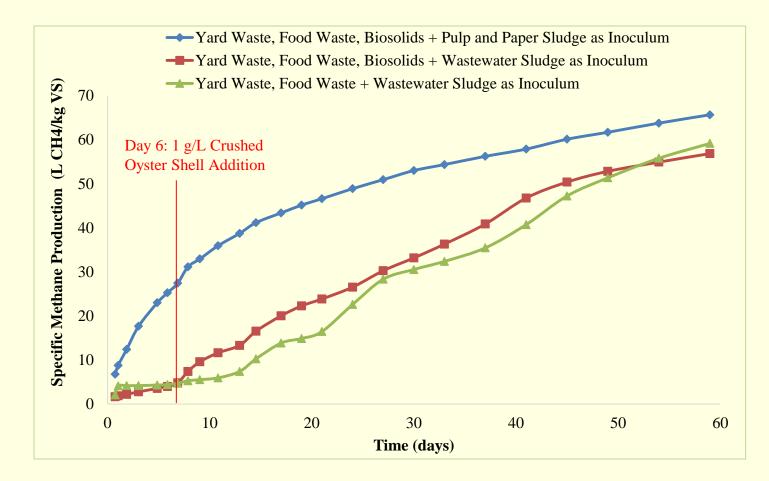
Lignocellulosic Analysis

• Lignin, cellulose, and hemicellulose contents in the bioaugmented digestate were 2%, 16%, and 16% less, respectively, than in the control digestate

Methane Yield Enhancements

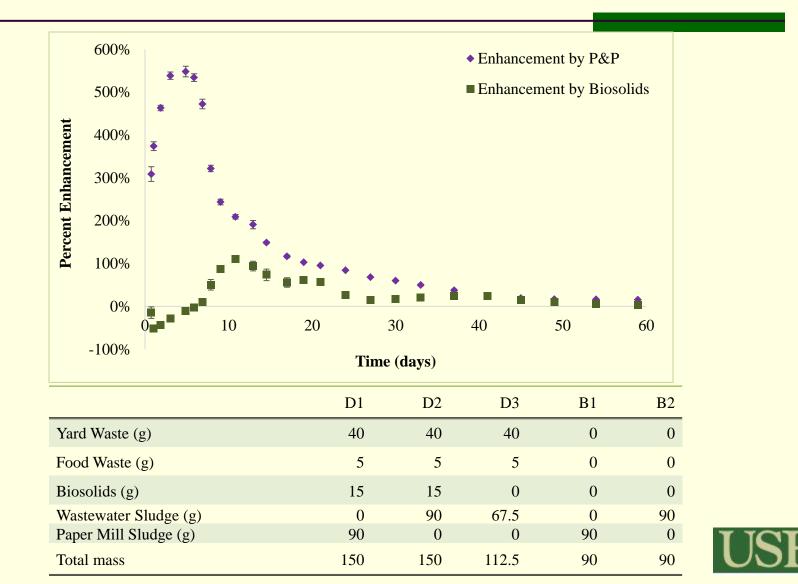
Benefits of HS-AD Implementation in FL

	Yard Waste	Food Waste	Total
Assumed Generation Rate (short tons/year) =	3,700,000	2,200,000	5,900,000
Assumed Volatile Solids Fraction (% by wet weight) =	0.60	0.15	
Assumed Biogas Generation (m ³ /kg VS) =	0.30	0.50	
Total Energy Content (GWh/year) =	3,520	870	4,390
Total Electricity Generation Potential (GWh/year) =	1,230	300	1,530
Total Electricity Generation in Florida (GWh/year) =			246,200
Fraction of Florida Electricity Demand Fulfilled =	0.5%	0.1%	0.6%
OR:			
CNG Generation (DGE/year) =	63,400,000	15,700,000	79,100,000
Total CNG Consumption in Florida (DGE/year) =			688,000,000
Fraction of Florida CNG Demand Fulfilled =	9.2%	2.3%	11.5%
Note: Assumes 9.7 kWh-m ⁻³ CH ₄ , 9.8 kWh-L ⁻¹ diesel, 35% electr efficiency: mass conversion factor = 907 kg per short top	rical conversion	efficiency, and 67%	CNG conversion

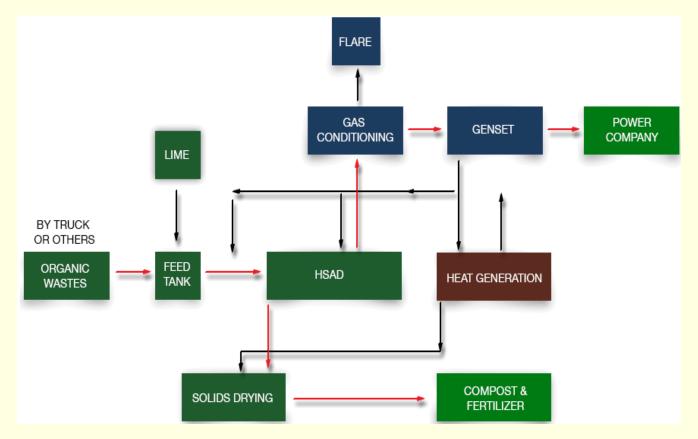

efficiency; mass conversion factor = 907 kg per short ton

	Nitrogen	Phosphorous
Assumed Digestate Generation Rate (short tons/year) =	3,540,000	3,540,000
Assumed Total Solids Content (%) =	20%	20%
Assumed Available Fraction (%) =	1.0%	0.5%
Nutrient Recovery Potential (short tons/year) =	7,080	3,540

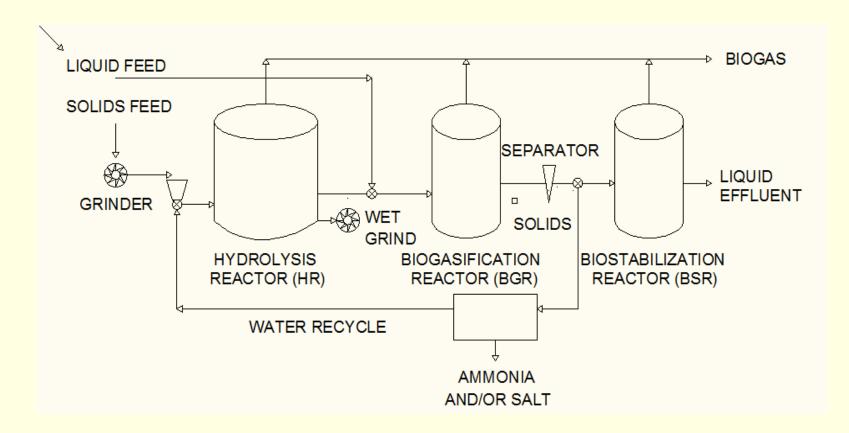
Note: Assumes 40% mass reduction in HS-AD; mass conversion factor = 907 kg per short ton



Preliminary Codigestion Study



Preliminary Codigestion Study



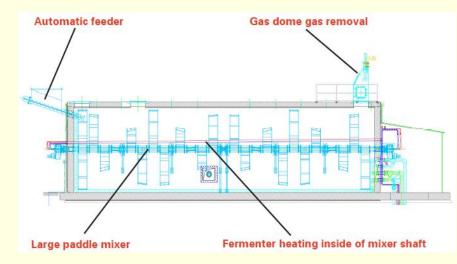
Orbit Energy Process

- Developed by the DOE
- Uses proprietary microbial consortium

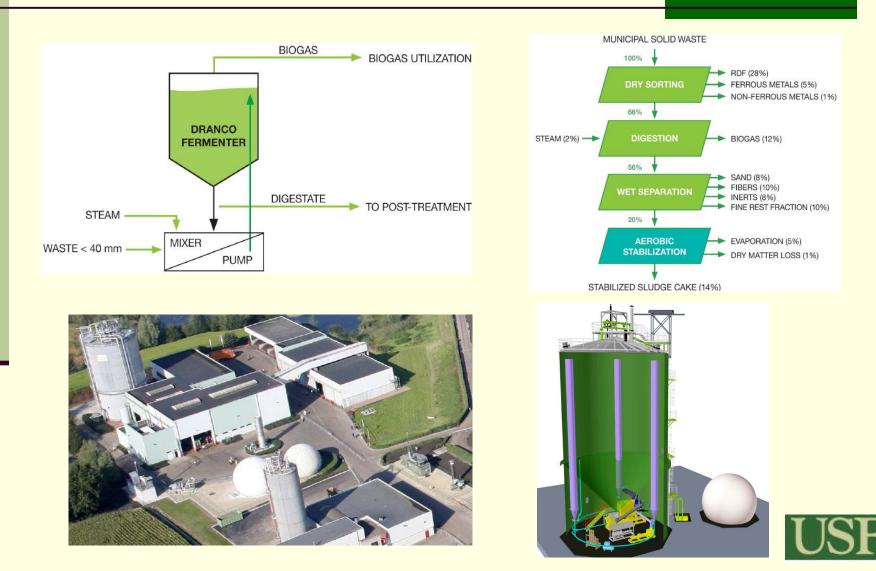
Clean World Technology

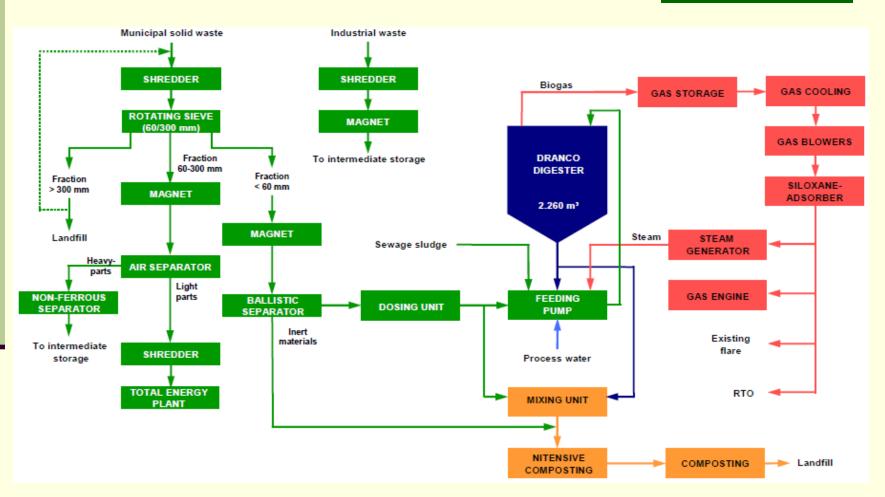
Clean World UC Davis

BIOFerm Dry Fermentation Technology and UW Oshkosh Facility

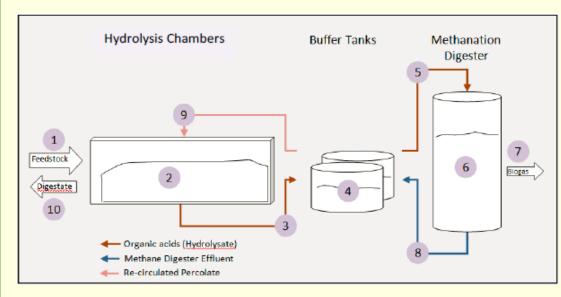


BIOFerm EUCO Technology



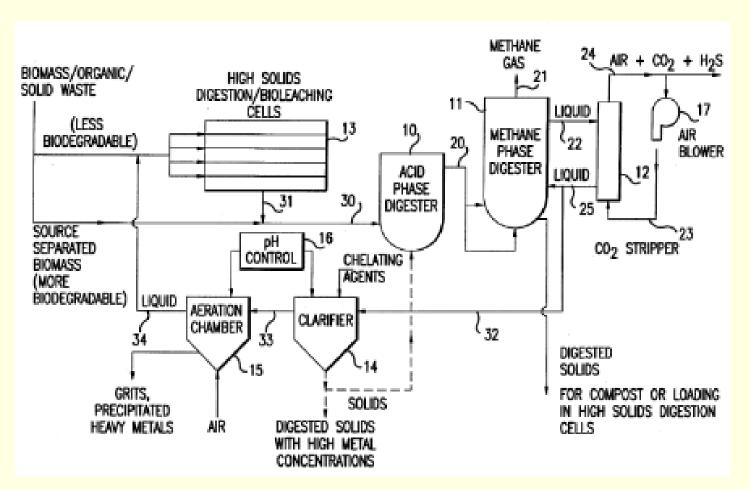


DRANCO Diagram, Sordisep Process, and Brecht I and II Facilities

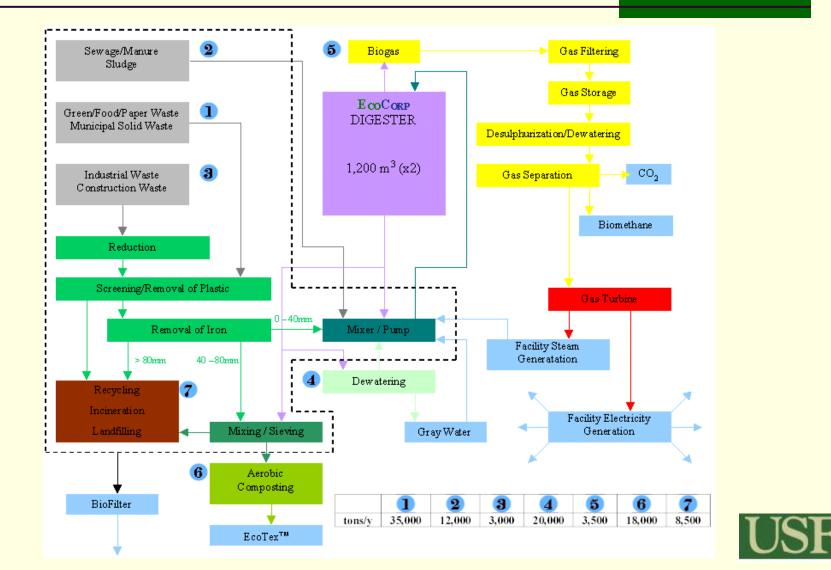


DRANCO Pohlsche Heide with Partial Steam Digestion

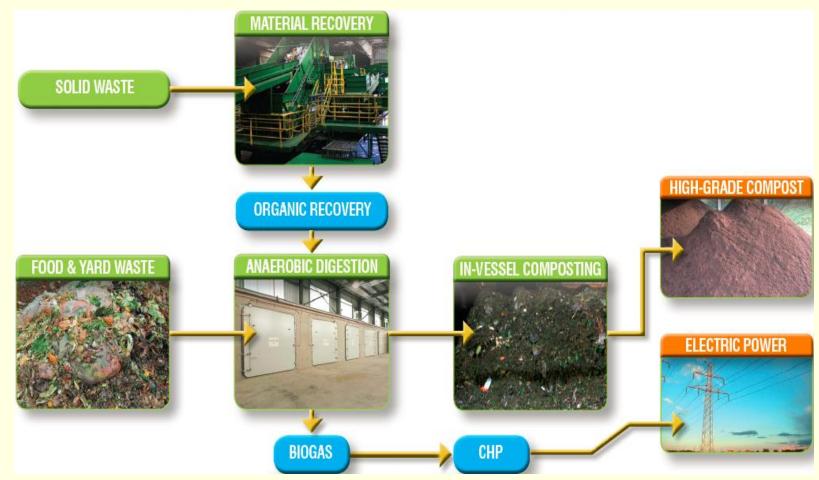
Harvest Power HS-AD in BC



Aikan North America Technology



Aikan North America Hartford, CT



EcoCorp Process Diagram

ZWE San Jose Process Diagram

