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Intro to HS-AD (a.k.a. SS-AD) 

 Designed to process feedstocks with > 15% total solids content. 
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Zero Waste Energy, Monterey 

2 

http://usfweb2.usf.edu/ur/logos.html


Research Motivation 

 Anaerobic Digestion (AD) of OFMSW results in: 

 Energy recovery/renewable energy generation 

 Reduces fugitive GHG emissions from landfills 

 Offsets GHG emissions from fossil-fuel derived energy 

 Nutrient recovery/organic fertilizer production 

 Reduces landfill leachate volume and strength  

 Offsets impacts of inorganic fertilizer production 

 High-Solids AD (HS-AD) advantages over Liquid AD: 

 Reduced parasitic energy demand 

 Reduced reactor volume requirements 

 Reduced water usage and leachate generation 
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Research Objectives 

 Overall Goals 

 Contribute to the fundamental science of HS-AD and evaluate 

potential for implementation in FL 

 Specific Objectives 

 1. State-of-the-Art of HS-AD 

 Trends and drivers in the industry and appropriate technologies for FL 

 2. Enhancing Bioenergy Production 

 Improve biodegradability of yard waste and explore co-digestion strategies 

 3. Potential for HS-AD Implementation in FL 

 Identify promising locations for HS-AD based on existing MSW 

infrastructure and potential bioenergy production, GHG emissions 

reductions and nutrient recovery. 

 Evaluate economics and develop policy recommendations.  
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Objective 1: State-of-the-Art 

 Goals 

 Understand trends and identify primary drivers in the industry 

 Identify appropriate technologies for implementation in FL 

 Methodology 

 Review published and “grey” literature 

 Developed chronological database of US HS-AD projects 

 Visits to facilities in California and the Netherlands 
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HS-AD Technology Classifications 
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HS-AD Locations in the US 

CleanWorld (3) 

ZWE (3) 

BIOFerm (1) 

Orbit Energy (1) 
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HS-AD Development Timeline 
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Summary of Major Findings 
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 Policy promoting OFMSW recycling in the US increasing: 
 20 states now have yard waste landfill bans, 5 have food waste bans 

 7 have landfill diversion targets 

 Over 200 communities offer separate collection of food waste 

 Required source-separation in San Francisco, Seattle, VT, and CT 

 29 states now have renewable portfolio standards 

 HS-AD implementation parallels policy development 

 HS-AD has surpassed L-AD for OSFMW processing capacity 

 CA is leading the way with policy and HS-AD development 

 Single-stage, batch, thermophilic, “garage” type systems are 

the most suitable for Florida 

 Low cost, simple operation, reliable  

http://usfweb2.usf.edu/ur/logos.html


Objective 2: Enhancing Bioenergy  

 The Lignocellulosic Challenge 

11 

Complex 

Organic Matter 

Hydrolysis 

Soluble Organic 

Molecules 

H2 + CO2 

Acetic Acid 

VFAs 
Biogas  

(CH4 + CO2) 

Acidogenesis 

(Fermentation) 

Acetogenesis 

http://usfweb2.usf.edu/ur/logos.html


Objective 2: Enhancing Bioenergy  

 Goals 
 Study the effects of bioaugmentation with pulp and paper mill anaerobic 

sludge on methane yields in batch HS-AD of yard waste 

 Determine whether enhancements can be sustained via digestate 

recirculation 

 Hypothesis 
 Hydrolytic microorganisms in pulp and paper sludge are adapted to 

lignocellulosic waste and therefore have a greater capacity to degrade 

lignocellulosics than a conventional inoculum 
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Materials and Methods 
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Digester Compositions 
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Phase 1 Specific Methane Yields 

0

20

40

60

80

100

0 20 40 60 80 100

S
p

ec
if

ic
 M

et
h

a
n

e 
Y

ie
ld

 (
L

 C
H

4
/k

g
 V

S
) 

Time (Days) 

Phase 1 Bioaugmentation: Yard waste inoculated with pulp and paper sludge

Phase 1 Control: Yard waste inoculated with wastewater sludge

15 

http://usfweb2.usf.edu/ur/logos.html


Phase 2 Specific Methane Yields 
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Summary of Major Findings 

 Results suggest that this strategy could serve as a low impact 

alternative to pretreatment 

 Significant enhancements in methane yields achieved and sustained 

through bioaugmentation with pulp & paper sludge 

 Chemical and lignocellulosic data support hypothesis 

 VFA concentrations indicate methanogenesis was rate-limiting in 

bioaugmented digesters while hydrolysis was limiting in control digesters 

 16%, 16%, and 2% less lignin, cellulose, and hemicellulose in 

bioaugmented digestate relative to control digestate 

 Need for future research: 

 Effects of varying substrate to inocula ratios 

 Mechanisms of methane yield enhancement 

 Bioaugmentation of OFMSW co-digestion mixtures – food, yard, biosolids.  

 Pilot and full-scale testing 
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Objective 3: Implementation in FL 

 Goals 

 Identify best FL counties for HS-AD implementation based on: 

 Existing MSW infrastructure  

 Potential bioenergy production & GHG emissions reductions  

 Potential for nutrient recovery. 

 Evaluate economics and develop policy recommendations.  

 Methodology 

 Review published and “grey” literature and FDEP data 

 Consider findings from State-of-the-Art assessment 

 Estimate potential bioenergy production, GHG reductions and 

nutrient recovery 
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Incentive for HS-AD Implementation 

 75% recycling goal by 2020 
 Current statewide recycling rate = 50% 

  Yard and food waste recycling rates = 51% and 7%, respectively 

 12% of waste stream is yard waste and 7% is food waste 

 Up to 13% increase in recycling rate achievable via OFMSW recycling 

 Renewable energy generation 
 Up to 500MW of renewable energy could be produced 

 175 MW electricity (~1% of FL total demand, > $120M) + 200 MW heat 

 OR: 80 million DGEs of CNG per year (~11.5% of FL total demand) 

 660,000 MTCO2E per year offset (~$3.2M - $400M) 

 Nutrient recovery 
 Up to 7,000 TPY and 3,500 TPY of N and P, respectively (~$ 2.1M) 
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OFMSW Recycling Infrastructure 

  

Liquid AD (a) 

1a - Harvest Power 

  

Composting (b) 

1b - George B. Wittmer Assoc., Inc.12 

2b - New River LF 

3b - Watson C&D 

4b - Vista LF 

5b - Solorganics, Inc. 

6b - 1 Stop Landscape and Brick, Inc. 

7b - Bay Mulch, Inc. 

8b - Mother’s Organics, Inc. 

9b - Busch Gardens 

10b - Bay Mulch, Inc. Plant City 

11b - BS Ranch and Farm, Inc. 

12b - 1 Stop Landscape, Inc. 

13b - Okeechobee LF 

14b - JFE-Brighton McGill13 

15b - MW Horticulture Recycling12 

16b - Environmental Turnkey, LLC. 

  
NOTES: 1Not listed by FDEP; 
2Yard waste composting only;  
3Permitted by Seminole Tribe 
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Outlook in Florida 

 Counties where implementation is most feasible: 

 Miami-Dade, Broward, Palm Beach, Hillsborough, Orange, 

Pinellas, Duval, Lee, and Alachua 

 Ideal locations for demonstration: 

 Universities, existing composting plants, or landfills with LFGTE 

 Primary barrier: Economics 

 Average landfill tipping fee in FL = $43.65  

 Break-even HS-AD tipping fee without energy sales = $41 – $53 

 With energy sales = $4 – $32 

 Lack of markets for compost and lack of regulatory drivers 
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Summary of Major Findings 

 Outlook is promising, especially in highly populated counties 

 Potential environmental and economic benefits are significant 

 Economic sustainability is reliant upon numerous factors 

 Local tipping fees 

 Quantity, quality, and proximity of available feedstock 

 Energy and compost markets and renewable energy incentives 

 Public-private partnerships  

 Legislative incentive has potential to greatly improve the 

feasibility of HS-AD implementation; recommendations: 

 Bans on landfilling food waste and yard waste 

 Mandated source-separation of food waste and yard waste 

 Policies promoting compost use and renewable energy generation 
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Additional Research 

 Pilot System 

 Preliminary studies developing operation standards 

 Co-digestion 

 Yard waste, food waste, biosolids 

 Oyster Shells 

 Waste product, alkalinity source 

 Micro-aeration 

 Improving biogas quality 
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Vendor Name 
Main Office 

Location 

Founding 

Year 
Primary Partnerships 

# of Facilities 

 in Operation  

in the US 

# of Facilities  

in Development  

in the US 

Zero Waste Energy, LLC California 2009 

Eggersmann Group, Bulk 

Handling Systems, 

Environmental Solutions Group 

≥ 3 ≥ 7 

CleanWorld Corporation California 2009 UC Davis, Synergex ≥ 3 ≥ 1 

Orbit Energy, Inc. North Carolina 2002 McGill Environmental ≥ 1 ≥ 5 

BIOFerm Energy Systems Wisconsin 2007 
Viessmann Group, Schmack 

Biogas 
≥ 1 ≥ 1 

Organic Waste Systems, Inc. 

Belgium 

(subsidiary in 

Ohio) 

1988 NR ≥ 0 ≥ 1 

Harvest Power, Inc. Massachusetts 2008 GICON Bioenergie GmbH ≥ 0 ≥ 1 

Eisenmann Corporation 

Germany 

(subsidiary in 

Illinois) 

1977 NR ≥ 0 ≥ 2 

Turning Earth, LLC. 

Denmark 

(subsidiary in 

Georgia) 

2009 
Solum Group,  

Aikan A/S 
≥ 0 ≥ 1 

EcoCorp, Inc. Maryland 2000 NR ≥ 0 ≥ 0 

HS-AD Vendors in the US 
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US Technology Characteristics 

Vendor Name 
Operating 

Temperature 

TS 

Content 

Loading 

Conditions 

Number of 

Stages 

Retention 

Time 

Parasitic Energy 

Demand 

Zero Waste Energy, LLC Thermophilic < 50% Batch 1 21 days 20% 

CleanWorld Corporation 

(formerly CleanWorld 

Partners, LLC) 

Thermophilic ~10% Continuous 3 20-30 days   

Orbit Energy, Inc. Thermophilic < 45% Continuous 1 “short” 8% 

BIOFerm Energy Systems Mesophilic 25-35% Batch 1 28 days 5-10% 

Organic Waste Systems, Inc. 
Thermophilic or 

Mesophilic 
< 50% Continuous 1 20 days NR 

Harvest Power, Inc. Thermophilic NR Batch 2 ≥ 14 days NR 

Eisenmann Corporation Thermophilic NR Continuous 1 NR NR 

Aikan North America, Inc. Thermophilic NR Batch 2 NR NR 

EcoCorp, Inc. Thermophilic 35-40% Continuous 1 20 days 20% 

NR = Not Reported; Information reported here was derived from technology vendor websites and personal communications 

http://usfweb2.usf.edu/ur/logos.html


Materials and Methods Cont’d 
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Inocula and Substrate Characterization 

Pulp and 

Paper Sludge 

Wastewater 

Sludge 

Yard Waste for 

Phase 1 Batch 

HS-AD 

Digestate from 

Phase 1 Bioaugmented 

Digesters 

Digestate from 

Phase 1 Control 

Digesters 

Yard Waste 

for Phase 2 

Batch HS-AD 

Alkalinity 

(mg/L as CaCo3) 
2,100 580 50 400 140 25 

TS 

(% of wet weight) 
10.0 ± 0.2 0.6 ± 0.0 50.8 ± 3.4 18.5 ± 0.1 23.7 ± 0.3 64.2 ± 0.5 

VS 

(% of wet weight) 
8.4 ± 0.1 0.4 ± 0.0 46.4 ± 2.9 16.6 ± 0.1 21.7 ± 0.2 60.1 ± 0.4 
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Biogas Quality 
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Chemical Analysis 
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pH = 7.1-8.4 (in bioaugmented digesters); 6.3-8.0 (in control digesters) 
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Lignocellulosic Analysis 

 Lignin, cellulose, and hemicellulose contents in the bioaugmented digestate 

were 2%, 16%, and 16% less, respectively, than in the control digestate 
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Methane Yield Enhancements 
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Benefits of HS-AD Implementation in FL 

     Yard Waste   Food Waste   Total  

 Assumed Generation Rate (short tons/year) =        3,700,000        2,200,000              5,900,000  

 Assumed Volatile Solids Fraction (% by wet weight) =                 0.60                 0.15  

 Assumed Biogas Generation (m3/kg VS) =                 0.30                 0.50  

 Total Energy Content (GWh/year) =              3,520                870                    4,390  

 Total Electricity Generation Potential (GWh/year) =               1,230                  300                    1,530 

 Total Electricity Generation in Florida (GWh/year) =                246,200  

 Fraction of Florida Electricity Demand Fulfilled =  0.5% 0.1% 0.6% 

 OR:  

 CNG Generation (DGE/year) =      63,400,000     15,700,000          79,100,000  

 Total CNG Consumption in Florida (DGE/year) =         688,000,000  

 Fraction of Florida CNG Demand Fulfilled =  9.2% 2.3% 11.5% 

Note: Assumes 9.7 kWh-m-3 CH4, 9.8 kWh-L-1diesel, 35% electrical conversion efficiency, and 67% CNG conversion 

efficiency; mass conversion factor = 907 kg per short ton 

Nitrogen Phosphorous 

Assumed Digestate Generation Rate (short tons/year) = 3,540,000 3,540,000 

Assumed Total Solids Content (%) = 20% 20% 

Assumed Available Fraction (%) = 1.0% 0.5% 

Nutrient Recovery Potential (short tons/year) = 7,080 3,540 

Note: Assumes 40% mass reduction in HS-AD; mass conversion factor = 907 kg per short ton 
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Preliminary Codigestion Study 
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Preliminary Codigestion Study 

D1 D2 D3 B1 B2 

Yard Waste (g) 40 40 40 0 0 

Food Waste (g) 5 5 5 0 0 

Biosolids (g) 15 15 0 0 0 

Wastewater Sludge (g) 0 90 67.5 0 90 

Paper Mill Sludge (g) 90 0 0 90 0 

Total mass 150 150 112.5 90 90 
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Orbit Energy Process  

 Developed by the DOE 

 Uses proprietary microbial consortium 
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Clean World Technology 
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Clean World UC Davis 
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BIOFerm Dry Fermentation Technology  

and UW Oshkosh Facility 
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BIOFerm EUCO Technology 
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DRANCO Diagram, Sordisep Process, 

and Brecht I and II Facilities 
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DRANCO Pohlsche Heide  

with Partial Steam Digestion 
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Harvest Power HS-AD in BC 
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Aikan North America Technology 
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Aikan North America Hartford, CT 
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EcoCorp Process Diagram 
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ZWE San Jose Process Diagram 
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